QCSP on Semicomplete Digraphs
نویسندگان
چکیده
We study the (non-uniform) quantified constraint satisfaction problem QCSP(H) as H ranges over semicomplete digraphs. We obtain a complexity-theoretic trichotomy: QCSP(H) is either in P, is NP-hard or is Pspace-complete. The largest part of our work is the algebraic classification of precisely which semicompletes enjoy only essentially unary polymorphisms, which is combinatorially interesting in its own right.
منابع مشابه
A classification of arc-locally semicomplete digraphs
Tournaments are without doubt the best studied class of directed graphs [3, 6]. The generalizations of tournaments arise in order to extend the well-known results on tournaments to more general classes of directed graphs. Moreover, the knowledge about generalizations of tournaments has allowed to deepen our understanding of tournaments themselves. The semicomplete digraphs, the semicomplete mul...
متن کاملA classification of locally semicomplete digraphs
In [19] Huang gave a characterization of local tournaments. His characterization involves arc-reversals and therefore may not be easily used to solve other structural problems on locally semicomplete digraphs (where one deals with a fixed locally semicomplete digraph). In this paper we derive a classification of locally semicomplete digraphs which is very useful for studying structural properti...
متن کاملLOCALLY SEMICOMPLETE DIGRAPHS WITH A FACTOR COMPOSED OF k CYCLES
A digraph is locally semicomplete if for every vertex x, the set of in-neighbors as well as the set of out-neighbors of x induce semicomplete digraphs. Let D be a k-connected locally semicomplete digraph with k ≥ 3 and g denote the length of a longest induced cycle of D. It is shown that if D has at least 7(k− 1)g vertices, then D has a factor composed of k cycles; furthermore, if D is semicomp...
متن کاملOn the Pathwidth of Almost Semicomplete Digraphs
We call a digraph h-semicomplete if each vertex of the digraph has at most h non-neighbors, where a non-neighbor of a vertex v is a vertex u 6= v such that there is no edge between u and v in either direction. This notion generalizes that of semicomplete digraphs which are 0-semicomplete and tournaments which are semicomplete and have no anti-parallel pairs of edges. Our results in this paper a...
متن کاملArc-Disjoint Paths in Decomposable Digraphs
4 We prove that the weak k-linkage problem is polynomial for every fixed k for totally Φ5 decomposable digraphs, under appropriate hypothesis on Φ. We then apply this and recent results 6 by Fradkin and Seymour (on the weak k-linkage problem for digraphs of bounded independence 7 number or bounded cut-width) to get polynomial algorithms for some class of digraphs like quasi8 transitive digraphs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014